Unit testing in RMG

Belinda Slakman
July 25, 2014

WRITING SOFTWARE WITHOUT AUTOMATED
TESTS IS LIKE WORKING ON AN
ELECTRICAL PANEL WITH A FORK ...

I CAN'T SEE
ANY REASON
WHY THIS WON'T
WORK.

SECONDS LATER. ..

Today we'll discuss...

Basics of unit testing
Best practices
Examples of some unit tests in RMG-Py

An analysis of our code coverage

Key advantages of Python unit testing are (from
quintagroup.com):

* Detecting problems early - Unit tests disclose problems
early into the development.

* Mitigating change - Allows the developer to refactor the
source code during the testing stage and later on, while still
making sure the module works as expected.

e Simplifying integration - By testing the separate
components of an application first and then testing them
altogether, integration testing becomes much easier.

e Source of Documentation

http://quintagroup.com

Basic concepts of unit testing

« A TestCase is a groups of tests, while a TestSuite
IS a group of TestCases (or TestSuites)

 Nomenclature: failures are unexpected results,
while everything else is an error

* In RMG-Py, live alongside the file it tests

Types of assertions

- assertEqual()

- assertAlmostEqual()
- assertRaises()
- assertTrue()

« assertIsInstance()

* You can add the 'msg’ option to make your output
more meaningful (loops)

Best practices

Use setUp() and tearDown():

 setUp(): runs before every test in a TestCase; can initialize variables or objects that are used in several tests
 tearDown(): runs after every test, independently of whether it passed

Regardless of us using ‘make test’ with nose, learn how to run your tests individually,
and do it as you make commits to your specific code

Write tests as you're coding (TDD)
Include general cases and “"edge” cases
Don'’t delete any tests!

Good unit tests can act as documentation
Use one assertion per test case!

Be careful about testing a function that relies on another function you are testing
* Helps ensure that your code is modular and decoupled!

Ex: the second function fails if the
first is faulty... a pain for testing

def is prime(number):

for element in range(number):
if number % element ==
return False
return True

def print_next prime(number):

index = number
while True:
index += 1
if is_prime(index):
print(index)

Examples

class TestSoluteDatabase(TestCase):

def setUp(self):
self.database = SolvationDatabase()
self.database.load(os.path.join(settings['database.directory'], ‘solvation’))

def testDiffusivity(self):
"Test that for a given solvent viscosity and temperature we can calculate a solute's
diffusivity"
species = Species(molecule=[Molecule(SMILES="C0OC=0")])
soluteData = self.database.getSoluteData(species)
T = 298
solventViscosity = 0.001
D = soluteData.getStokesDiffusivity(T, solventViscosity)
self.assertAlmostEqual((D*1E12), ©.00000979)

def testSolventLibrary(self):
"Test we can obtain solvent parameters from a library"
solventData = self.database.getSolventData('water")
self.assertTrue(solventData is not None)
self.assertEqual(solventData.s_h, 2.836)
self.assertRaises(DatabaseError, self.database.getSolventData, 'orange juice')

Running tests

S|mple
__name__ == ¢ main__
unlttest main()

e More control:

suite = unittest.TestLoader().
loadTestsFromTestCase(TestSequenceFunction)
unittest.TextTestRunner(verbosity=2).run(suite)

 We use nose.py to run all of our tests at once

Nose

e Runs when we ‘make test’

e Collects and runs TestCases

* Plugins for collecting information (both built-in or user-
written)

* Coverage (we'll discuss ours later)
e Error handling

* Printing output

Coverage in RMG-Py

Learn about coverage: http://nedbatchelder.com/
code/coverage/

Measures % lines of executable code that have
been executed

lt's stand-alone, but we use the nose plug-in

Info stored in testing/coverage

http://nedbatchelder.com/code/coverage/

Our results

Helpful resources

* Python documentation

e http://jettknupp.com/blog/2013/12/09/improve-your-
python-understanding-unit-testing/

o http://pymotw.com/2/unittest/ “Python module of the
week”

http://jeffknupp.com/blog/2013/12/09/improve-your-python-understanding-unit-testing/
http://pymotw.com/2/unittest/

Suggestions

* Practice test driven development!
* Improve current unit tests for “your” code, and

assign people to write tests for other stuff that's
lacking

