Parallel Programming
&

G

Murat Keceli

Why do we need it now?

10,000,000
/
Duag ore Ita] /
1,000,000 -
- |
Intel CPU Trends 4
{sources: Intel, Wikipedia, K. Olukotun} -
100,000
10,000
1,000
100
10
1 m Transistors (000) I
../. * @ Clock Speed (MHz)
L X] b4 A Power (W)
@ Perf/Clock (ILP)
° [I |
1970 1975 1980 1985 1990 1995 2000 2005 2010

http://www.gotw.ca/publications/concurrency-ddj.htm

e

Why do we need it now?

™

“-In0 - threads

512
“B-In0 - cores

- 000 - cores P
@
=
<
@D
b
E
256 256 2
Q
n
n
128 128 5
°
64 64 5

32 32

- a 8 8 1 ot B,

2007 2008 2009 2010 2011 2012 2013 2014

Intel® Xeon Phi™ Coprocessor 7120
(16GB, 1.238 GHz, 61 core)

X

/

http://herbsutter.com/2012/11/30/256-cores-by-2013/

3

s

Flyyn’s Taxonomy (1966)

Computer architectures

Single Multiple
Instruction Instruction
Stream Stream

Single | | |
Data — .
Stream
Multiple 3
Data
Stream

/

http://users.cis.fiu.edu/~prabakar/cda4101/Common/notes/lecture03.html

4 N

Multiple instruction multiple data

e Shared memory
® All processors are connected to a "globally available" memory.
® Your laptop, smartphone, a single node in a cluster.
® Easier to implement, but not scalable.

e Distributed memory
® Each processor has its own individual memory location.
® Single processors at different nodes.
® Data is shared through messages. Harder to implement.

e Hybrid (clusters, grid computing)
e Distributed shared memory (Distributed Global Address Space)

. /

5

Grid and Cloud Computing

Scalable solutions for loosely coupled jobs.

Cloud 1s the evolved version of grid computing. (in terms of
efficiency, QoS, reliability)

Crowd-sourcing: SETI@HOME, FOLDIT@HOME,

The clean energy project. 2.3 million organic compounds
screened by volunteers to discover the next generation of solar
cell materials. (World Community Grid, IBM)

We can write proposals for thermochemistry calculations for
aromatic hydrocarbons.

4 N

Goals of parallel programming

e Linear speedup: problem of a given size 1s solved N times faster
on N processors

® You can reduce time/cost

Speedup= Serial execution time g = 1 _N 0<E — S_N <1
Moy NN
N

Parallel execution time

e Scalability: problem that is N times bigger is solved in the same
amount of titme on N processors
® You can attack larger problems

_ /

Amdahl’s law

Amdahl’s Law

20.00 —
/
18.00 //
/ Parallel Portion
16.00 7 50%
/ —75%
14.00 90%
/ ——95%
12.00 A
10.00 /
/ //
8.00 / //
6.00 //
4.00 - / —
-
2.00 = —
moo—c&-rmwu-;eoa;s!r eu%gw
=% 3 884838 28 L g
s « © g 8 8
Number of Processors

0 < p <1: parallel portion
1

(l—p)+£

Two independent parts A B

Original process

Make B 5x faster

Make A 2x faster

http://en.wikipedia.org/wiki/Amdahl's_law 8

4 N

Parallelization Tools

e Auto-parallelization

e Libraries (Intel Threading Building Blocks, Intel MKL, Boost)
e (Cilk, Unified Parallel C, Coarray Fortran

e Functional programming languages (Lisp, F#)

e OpenMP (Open Multi-Processing, shared memory)

e MPI (Message Passing Interface, distributed memory),

e Java is designed for thread level parallelism, java.util.concurrent

[PythOIl (https://Wiki.python.org/moin/ParallelProcessing)

® Global interpreter lock: The mechanism to assure that only one thread
executes Python bytecode at a time

4 N

How to do parallel programming

e Start with the chunk that takes most amount of time.
e Decide the parallelization scheme based on available hardware
and software.

e Divide the chunk into subtasks such that:

® Minimum dependency (minimizes communication)
® Each process has its own data (data independence)

¢ Each process do not need others’ functions to finish (functional independence)

® Equal distribution (minimizes latency)
® Workload is equally distributed

_

SCOOP

. SCo0P’

e Scalable COncurrent Operations in Python: is a distributed task
module allowing concurrent parallel programming on various
environments, from heterogeneous grids to supercomputers.

® The future is parallel; ‘
® Simple is beautiful;

® Parallelism should be simpler.

_ @0'e oo /

http://code.google.com/p/scoop/ 1"

s

Hello World

_

I | from _ future_ import print function
2 | from scoop import futures

! ' def helloWorld(value):
5 return "Hello World from Future #{0}".format(value)
if name == " main__ ":

retur;;alues = list(futures.map(helloWorld, range(1l6)))
print("\n".join(returnvalues))

W 0 ~d

e Results of a map are always ordered even if their computation

was made asynchronously on multiple computers.

/

http://code.google.com/p/scoop/

12

RMG & Thermochemistry

e Thermochemical parameters (enthalpy, entropy, heat capacity)
are important for reaction equilibrium constants, kinetic

parameter estimates, and thermal effects.

e Affects both the mechanism generation process and the
behavior of the final resulting model.

e Estimate based on the group additivity approach of Benson.
This method is fast and can be improved by adding more parameterization.
Harder to parallelize: Hierarchical search, database sharing

Currently fails for aromatic species and subject to fail for any species outside
of its parametrization scope.

As the applications of RMG starts to vary, this module needs to be updated
for ad hoc corrections.

4 N

QMTP (Greg Magoon)

e Quantum mechanics thermodynamic property (QMTP) module
1s designed for on-the-fly quantum and force field calculations
to calculate thermochemical parameters.

Must be linked to third party programs.
Error checking is required.

Slow. Speed depends on the method of calculation and the software chosen.

Calculations are uncoupled. (embarrassingly parallel) Much easier to
parallelize.

Both speed and reliability improvement comes from outside.

. /

14

QMTP Design

1. Connectivity
representation

ﬁ
_
2. 3D structure

3. QM/MM input file

with 3D structure 4. Molecular properties

(Gaussian03,
MOPAC20089,
or MM4)

Greg Magoon'’s thesis 2012

1,3-Hexadiene without QM

Serial: 3 minutes

model:595:enlarge
88.44%

model:80:generateThermoData pdep:267:explorelsomer
16.96% 2.19%
(0.00%)
507

main:323:execute
100.00%
(0.00%)

main:498:saveEverything
1.44%
(0.00%)
18

main:652:saveOutputHTML
1.15%
(0.00%)
18

~:0:<method 'fromAdjacencyList'
of 'rmgpy.molecule.group.Group'
objects>
1.03%
(0.07%)

main:224:initialize adjlist:51:fromAdjacencyList
15.45% 1.07%
(0.01%) (0.88%)
11038

model:1417:updateUnimolecularReactionNetworks output:52:saveOutputHTML

48.76%
(0.02%)
18

1.35%
(0.01%)
19

16

1,3-Hexadiene with Mopac

PM3

Serial: 32 mins

model:80:generateThermoData
93.63%
(0.01%)
293

~:0:<method 'solve' of
'pydged.DQED' objects>
1.06%
(0.18%)
60

main:323:execute
100.00%
(0.00%)

main:224:initialize
19.80%
(0.00%)

model:595:enlarge main:203:loadDatabase
98.46% 1.01%

(0.00%) (0.00%)

15 1

model:1417:updateUnimolecularReactionNetworks model:577:react
3.55% 1.14%
(0.00%) (0.00%)
15 90

17

Current situation

36 cores: 7 mins

12

e—e real

= & jdeal -
10} _ =

Speedup
()]

0 10 20 30 40
Number of cores

4 N

Problem-1

e Job submission through grid engine fails.

ImportError: libRDGeneral.so.1: cannot open shared object file: No such file or directory

® MOI‘e IIlfO @ https://groups.google.com/forum/#!topic/scoop-users/T7bXN5x1zic

“SCOOP won't be handling environment variables directly (at least the way as MPI does).
The next version (0.7) will contain a new feature called a prolog which is an executable (ie.
a shell script) that SCOOP will execute at the launch of every worker. Exporting
environment variables will be possible in this prolog.”

e There might be a trick. (.bashrc, .login is not the solution)
e Links required can be 1nstalled by root.
e Temporary solution:

Submit a sleep job, ssh to that node, and run interactively. Don’t forget to
cancel them. (kill -9 -1, then qdel xxxx)

19

Problem-2

Job fails sometimes.

AttributeError: 'ccData’ object has no attribute 'rotcons'
ERROR:root:Not all of the required keywords for success were found in the output file!

Reason: Unpredictable buffering of I/O by OS.
Trying: os.fsync, os.path.getsize

Temporary solution: Add a sleep part in the code. (1 second
seems ok for MOPAC jobs, Gaussian jobs are more tricky)

/

20

Conclusions

Parallel was the future, now we all need 1it.
Redesigning some portions of RMG-Py is necessary.

Reactor conditions, Pdep calculations, graph search
Database structure (Tree, might not be the best option)
Minimize [/O.

Avoid writing to home disk. Move them when job finishes.
We can avoid sharing library with workers.

Parallel programming 1s a headache even for the most advanced
programmers.

Y ou may think that you solve some problems by sleeping, but it
1s only a dream, 1t won’t last long.

s

Thank you all

™

_

RMG-Dev

N . L
I I I I I Northeastern University

/

22

\

References

http://web0.tc.cornell.edu/Services/Education/Topics/Parallel/

https://computing.linl.gov/tutorials/parallel comp/

http://www.ibm.com/developerworks/library/wa-cloudgrid/

http://parajava.sourceforge.net/

http://eroups.csail.mit.edu/cag/ps3/

http://www.intel-software-academic-program.com/courses/

/

23

Monte-Carlo computation of pi

n = 15000 (r =~ 3.14533)

e Generate a random point inside unit square

Two random numbers 0<x,y<1
e The probability of having this point
inside the quarter of unit disc 1s p1/4

http://code.google.com/p/scoop/ 24

