
1

Parallel Programming
&

Murat Keçeli

2

Why do we need it now?

http://www.gotw.ca/publications/concurrency-ddj.htm

3

Why do we need it now?

Intel® Xeon Phi™ Coprocessor 7120X
(16GB, 1.238 GHz, 61 core)

http://herbsutter.com/2012/11/30/256-cores-by-2013/

4

Flyyn’s Taxonomy (1966)

Computer architectures

http://users.cis.fiu.edu/~prabakar/cda4101/Common/notes/lecture03.html

5

Multiple instruction multiple data

l  Shared memory
•  All processors are connected to a "globally available" memory.
•  Your laptop, smartphone, a single node in a cluster.
•  Easier to implement, but not scalable.

l  Distributed memory
•  Each processor has its own individual memory location.
•  Single processors at different nodes.
•  Data is shared through messages. Harder to implement.

l  Hybrid (clusters, grid computing)
l  Distributed shared memory (Distributed Global Address Space)

6

Grid and Cloud Computing

l  Scalable solutions for loosely coupled jobs.
l  Cloud is the evolved version of grid computing. (in terms of

efficiency, QoS, reliability)
l  Crowd-sourcing: SETI@HOME, FOLDIT@HOME,
l  The clean energy project. 2.3 million organic compounds

screened by volunteers to discover the next generation of solar
cell materials. (World Community Grid, IBM)

l  We can write proposals for thermochemistry calculations for
aromatic hydrocarbons.

7

Goals of parallel programming

l  Linear speedup: problem of a given size is solved N times faster
on N processors
•  You can reduce time/cost

l  Scalability: problem that is N times bigger is solved in the same
amount of time on N processors
•  You can attack larger problems

Speedup= Serial execution time
Parallel execution time

SN=
t1
tN

= N 0 < EN=
SN
N

≤1

8

Amdahl’s law

0 ≤ p ≤1: parallel portion

SN = 1

1− p() + p
N

http://en.wikipedia.org/wiki/Amdahl's_law

9

Parallelization Tools

l  Auto-parallelization
l  Libraries (Intel Threading Building Blocks, Intel MKL, Boost)
l  Cilk, Unified Parallel C, Coarray Fortran
l  Functional programming languages (Lisp, F#)
l  OpenMP (Open Multi-Processing, shared memory)
l  MPI (Message Passing Interface, distributed memory),
l  Java is designed for thread level parallelism, java.util.concurrent
l  Python (https://wiki.python.org/moin/ParallelProcessing)

•  Global interpreter lock: The mechanism to assure that only one thread
executes Python bytecode at a time

10

How to do parallel programming

l  Start with the chunk that takes most amount of time.
l  Decide the parallelization scheme based on available hardware

and software.
l  Divide the chunk into subtasks such that:

•  Minimum dependency (minimizes communication)
•  Each process has its own data (data independence)
•  Each process do not need others’ functions to finish (functional independence)

•  Equal distribution (minimizes latency)
•  Workload is equally distributed

11

SCOOP

l  Scalable COncurrent Operations in Python: is a distributed task
module allowing concurrent parallel programming on various
environments, from heterogeneous grids to supercomputers.
•  The future is parallel;
•  Simple is beautiful;
•  Parallelism should be simpler.

http://code.google.com/p/scoop/

12

Hello World

l  Results of a map are always ordered even if their computation
was made asynchronously on multiple computers.

http://code.google.com/p/scoop/

13

RMG & Thermochemistry

l  Thermochemical parameters (enthalpy, entropy, heat capacity)
are important for reaction equilibrium constants, kinetic
parameter estimates, and thermal effects.

l  Affects both the mechanism generation process and the
behavior of the final resulting model.

l  Estimate based on the group additivity approach of Benson.
•  This method is fast and can be improved by adding more parameterization.
•  Harder to parallelize: Hierarchical search, database sharing
•  Currently fails for aromatic species and subject to fail for any species outside

of its parametrization scope.
•  As the applications of RMG starts to vary, this module needs to be updated

for ad hoc corrections.

14

QMTP (Greg Magoon)

l  Quantum mechanics thermodynamic property (QMTP) module
is designed for on-the-fly quantum and force field calculations
to calculate thermochemical parameters.

•  Must be linked to third party programs.
•  Error checking is required.
•  Slow. Speed depends on the method of calculation and the software chosen.
•  Calculations are uncoupled. (embarrassingly parallel) Much easier to

parallelize.
•  Both speed and reliability improvement comes from outside.

15

QMTP Design

!

Greg Magoon’s thesis 2012

16

1,3-Hexadiene without QM

base:789:matchNodeToStructure
9.48%

(3.20%)
891134

~:0:<method
'isSubgraphIsomorphic' of

'rmgpy.molecule.molecule.Molecule'
objects>
5.84%

(5.84%)
2215968

3.77%
655051

~:0:<method 'getLabeledAtoms' of
'rmgpy.molecule.group.Group'

objects>
0.81%

(0.81%)
2525703

0.35%
879320

base:924:matchToStructure
1.11%

(0.03%)
11814

1.11%
11421

~:0:<method 'getLabeledAtoms' of
'rmgpy.molecule.molecule.Molecule'

objects>
1.30%

(1.30%)
2355705

0.45%
655051

~:0:<isinstance>
1.29%

(1.29%)
4064463

0.95%
2778700

1.06%
35488

base:168:load
2.15%

(0.68%)
110

main:498:saveEverything
1.44%

(0.00%)
18

main:652:saveOutputHTML
1.15%

(0.00%)
18

1.15%
18

output:52:saveOutputHTML
1.35%

(0.01%)
19

1.15%
18

main:323:execute
100.00%
(0.00%)

1

1.44%
18

main:224:initialize
15.45%
(0.01%)

1

15.45%
1

model:595:enlarge
88.44%
(0.06%)

18

82.43%
16

6.00%
2

main:203:loadDatabase
8.74%

(0.03%)
1

8.74%
1

0.20%
1

pdep:267:exploreIsomer
2.19%

(0.00%)
29

2.19%
29

model:577:react
20.46%
(0.00%)

148

18.27%
119

model:80:generateThermoData
16.96%
(0.00%)

507

16.94%
503

model:1417:updateUnimolecularReactionNetworks
48.76%
(0.02%)

18

48.76%
18

model:758:processNewReactions
1.30%

(0.03%)
44

1.30%
44

groups:101:getReactionTemplate
3.09%

(0.07%)
5027

base:854:descendTree
10.11%
(0.56%)
123302

2.93%
10374

9.48%
854881

6.28%
24015

statmech:357:getStatmechData
11.99%
(0.01%)

70

statmechfit:80:fitStatmechToHeatCapacity
11.81%
(0.01%)

69

11.81%
69

statmechfit:248:fitStatmechPseudo
4.60%

(0.00%)
21

4.60%
21

statmechfit:141:fitStatmechDirect
7.12%

(0.00%)
48

7.12%
48

rmg:64:load
2.25%

(0.00%)
1

2.25%
1

family:881:fillKineticsRulesByAveragingUp
6.21%

(0.00%)
33

6.21%
33

adjlist:51:fromAdjacencyList
1.07%

(0.88%)
11038

2.18%
29

__init__:251:generateReactions
20.46%
(0.00%)

213

20.46%
213

model:158:processThermoData
1.45%

(0.01%)
507

1.45%
507

thermo:596:getThermoData
15.52%
(0.00%)

500

15.47%
497

pdep:450:update
48.74%
(0.13%)

3556

48.74%
3556

model:477:makeNewReaction
1.23%

(0.04%)
2856

1.23%
2856

network:192:calculateRateCoefficients
35.70%
(0.44%)

28

35.70%
28

model:205:generateStatMech
11.99%
(0.00%)

70

11.99%
70

network:740:applyModifiedStrongCollisionMethod
12.29%
(0.03%)

1120

12.29%
1120

network:263:setConditions
22.96%
(0.03%)

1120

22.96%
1120

statmech:630:getStatmechData
11.99%
(0.00%)

70

11.99%
70

model:351:makeNewSpecies
1.13%

(0.03%)
10192

1.13%
10188

rules:416:fillRulesByAveragingUp
6.21%

(3.30%)
471651

6.20%
1920

rules:373:getRule
1.63%

(0.55%)
491725

1.56%
471651

rules:393:getAllRules
1.01%

(0.86%)
493918

1.01%
491725

base:1081:isMoleculeForbidden
5.58%

(1.78%)
184177

2.07%
1560917

0.45%
1636450

0.81%
1636450

thermo:753:estimateRadicalThermoViaHBI
13.53%
(0.02%)

701

thermo:830:estimateThermoViaGroupAdditivity
14.87%
(0.11%)

1491

8.95%
701

thermo:941:__addGroupThermoData
7.56%

(0.20%)
32336

0.51%
1078

~:0:<method
'calculateSymmetryNumber' of

'rmgpy.molecule.molecule.Molecule'
objects>
6.68%

(6.68%)
2192

3.98%
1402

13.53%
701

7.05%
31258

2.70%
790

7.04%
32336

~:0:<method 'solve' of
'pydqed.DQED' objects>

11.70%
(1.99%)

69

4.59%
21

statmechfit:383:evaluate
5.70%

(0.76%)
4705

5.70%
4705

statmechfit:474:evaluate
4.02%

(1.01%)
4200

4.02%
4200

7.12%
48

family:493:load
1.57%

(0.00%)
33

1.54%
99

__init__:107:loadFamilies
1.62%

(0.00%)
1

1.57%
33

rmg:107:loadKinetics
1.62%

(0.00%)
1

1.62%
1

__init__:99:load
1.62%

(0.00%)
1

1.62%
1

1.62%
1

6.21%
33

network:522:calculateMicrocanonicalRates
4.01%

(0.74%)
224

~:0:<method
'calculateMicrocanonicalRateCoefficient'

of 'rmgpy.reaction.Reaction'
objects>
3.09%

(1.87%)
4888

3.09%
4888

__init__:296:generateReactionsFromFamilies
20.46%
(0.01%)

213

20.46%
213

family:1174:generateReactions
20.45%
(0.06%)

7029

20.45%
7029

family:910:applyRecipe
6.81%

(0.24%)
28402

~:0:<method 'split' of
'rmgpy.molecule.molecule.Molecule'

objects>
1.17%

(1.17%)
28222

1.17%
28222

~:0:<method 'copy' of
'rmgpy.molecule.molecule.Molecule'

objects>
3.78%

(3.78%)
54970

3.75%
54249

family:1026:__generateProductStructures
13.30%
(0.17%)
28239

6.79%
28222

family:1108:isMoleculeForbidden
5.93%

(0.35%)
106570

5.93%
106570

5.58%
184177

~:0:<method 'toNASA' of
'rmgpy.thermo.wilhoit.Wilhoit'

objects>
1.31%

(0.07%)
499

optimize:1131:fminbound
1.21%

(0.52%)
507

1.18%
499

1.31%
499

thermo:725:getThermoDataFromGroups
15.20%
(0.01%)

498

15.20%
498

14.87%
790

family:1156:__matchReactantToTemplate
0.82%

(0.05%)
25053

family:1223:__generateReactions
20.39%
(0.32%)
14895

13.30%
28239

0.82%
25053

family:1522:getReactionTemplate
3.09%

(0.00%)
5027

3.05%
4971

~:0:<method
'generateResonanceIsomers' of

'rmgpy.molecule.molecule.Molecule'
objects>
1.51%

(1.51%)
12608

1.51%
12608

~:0:<method 'isIsomorphic' of
'rmgpy.molecule.molecule.Molecule'

objects>
1.16%

(1.16%)
582525

0.91%
365785

family:1213:calculateDegeneracy
8.68%

(0.01%)
1530

8.68%
1529

3.09%
5027

8.67%
1530

fromnumeric:1185:sum
1.00%

(0.16%)
253008

linalg:185:solve
6.68%

(1.33%)
309590

~:0:<numpy.core.multiarray.zeros>
0.84%

(0.84%)
372520

0.35%
309590

linalg:31:_makearray
1.19%

(0.44%)
632323

1.15%
619180

linalg:64:_commonType
1.42%

(0.75%)
314349

1.39%
309590

numeric:180:asarray
0.84%

(0.35%)
725478

0.66%
632323

statmech:669:getStatmechDataFromGroups
11.99%
(0.00%)

70

11.99%
70

~:0:<method
'generateCollisionMatrix' of

'rmgpy.pdep.configuration.Configuration'
objects>
16.67%

(16.68%)
2320

network:718:calculateCollisionModel
18.23%
(1.10%)

1120

0.44%
2240

16.67%
2320

statmechfit:357:hinderedRotor_d_heatCapacity_d_barr
1.71%

(1.71%)
185549

1.21%
130949

statmechfit:311:harmonicOscillator_heatCapacity
0.98%

(0.94%)
304941

0.45%
141141

statmechfit:321:harmonicOscillator_d_heatCapacity_d_freq
1.83%

(1.79%)
304941

0.85%
141141

statmechfit:332:hinderedRotor_heatCapacity
2.02%

(2.00%)
185549

1.43%
130949

statmechfit:345:hinderedRotor_d_heatCapacity_d_freq
1.32%

(1.30%)
185549

0.93%
130949

0.51%
54600

0.52%
163800

0.98%
163800

0.60%
54600

0.39%
54600

20.39%
13365

~:0:<rmgpy.pdep.msc.applyModifiedStrongCollisionMethod>
12.23%
(4.78%)

1120

12.23%
1120

4.01%
224

18.23%
1120

0.87%
218960

6.58%
305965

11.99%
70

~:0:<method 'fromAdjacencyList'
of 'rmgpy.molecule.group.Group'

objects>
1.03%

(0.07%)
10753

0.97%
10753

Serial: 3 minutes

17

1,3-Hexadiene with Mopac PM3

mopac:195:generateQMData
92.42%
(0.00%)

101

molecule:194:createGeometry
15.42%
(0.00%)

101

15.42%
101

mopac:61:run
76.81%
(0.00%)

102

76.81%
102

molecule:56:generateRDKitGeometries
15.42%
(0.00%)

101

15.42%
101

subprocess:674:communicate
76.64%
(0.00%)

203

76.58%
102

molecule:210:generateThermoData
92.77%
(0.00%)

191

92.42%
101

molecule:80:rd_embed
15.41%

(15.40%)
101

15.41%
101

main:323:execute
100.00%
(0.00%)

1

model:595:enlarge
98.46%
(0.00%)

15

79.81%
13

main:224:initialize
19.80%
(0.00%)

1

19.80%
1

model:80:generateThermoData
93.63%
(0.01%)

293

93.62%
289

model:1417:updateUnimolecularReactionNetworks
3.55%

(0.00%)
15

3.55%
15

model:577:react
1.14%

(0.00%)
90

1.03%
77

18.65%
2

main:203:loadDatabase
1.01%

(0.00%)
1

1.01%
1

statmech:357:getStatmechData
1.09%

(0.00%)
61

statmechfit:80:fitStatmechToHeatCapacity
1.07%

(0.00%)
60

1.07%
60

main:138:getThermoData
92.80%
(0.00%)

191

29.72%
28

thermo:753:estimateRadicalThermoViaHBI
63.69%
(0.00%)

388

63.26%
163

pdep:450:update
3.55%

(0.01%)
2121

3.55%
2121

__init__:251:generateReactions
1.14%

(0.00%)
123

1.14%
123

model:205:generateStatMech
1.09%

(0.00%)
61

1.09%
61

network:192:calculateRateCoefficients
2.38%

(0.03%)
19

2.38%
19

statmech:630:getStatmechData
1.09%

(0.00%)
61

1.09%
61

network:263:setConditions
1.49%

(0.00%)
760

1.49%
760

network:740:applyModifiedStrongCollisionMethod
0.87%

(0.00%)
760

0.87%
760

92.77%
191

63.08%
163

subprocess:1166:wait
76.59%
(0.00%)

203

76.58%
102

subprocess:462:_eintr_retry_call
76.76%
(0.00%)

406

76.59%
203

__init__:296:generateReactionsFromFamilies
1.14%

(0.00%)
123

1.14%
123

family:1174:generateReactions
1.14%

(0.00%)
4059

1.14%
4059

network:718:calculateCollisionModel
1.17%

(0.07%)
760

~:0:<method
'generateCollisionMatrix' of

'rmgpy.pdep.configuration.Configuration'
objects>
1.07%

(1.07%)
1360

1.07%
1360

1.17%
760

~:0:<posix.waitpid>
76.59%

(76.59%)
203

76.59%
203

family:1223:__generateReactions
1.14%

(0.02%)
8408

1.14%
7680

~:0:<rmgpy.pdep.msc.applyModifiedStrongCollisionMethod>
0.87%

(0.33%)
760

0.87%
760

~:0:<method 'solve' of
'pydqed.DQED' objects>

1.06%
(0.18%)

60

statmech:669:getStatmechDataFromGroups
1.09%

(0.00%)
61

1.09%
61

1.09%
61

Serial: 32 mins

18

Current situation

36 cores: 7 mins

19

Problem-1

l  Job submission through grid engine fails.
•  ImportError: libRDGeneral.so.1: cannot open shared object file: No such file or directory

l  More info @ https://groups.google.com/forum/#!topic/scoop-users/T7bXN5x1zic

•  “SCOOP won't be handling environment variables directly (at least the way as MPI does).
The next version (0.7) will contain a new feature called a prolog which is an executable (ie.
a shell script) that SCOOP will execute at the launch of every worker. Exporting
environment variables will be possible in this prolog.”

l  There might be a trick. (.bashrc, .login is not the solution)
l  Links required can be installed by root.
l  Temporary solution:

•  Submit a sleep job, ssh to that node, and run interactively. Don’t forget to
cancel them. (kill -9 -1, then qdel xxxx)

20

Problem-2

l  Job fails sometimes.
•  AttributeError: 'ccData' object has no attribute 'rotcons'
•  ERROR:root:Not all of the required keywords for success were found in the output file!

l  Reason: Unpredictable buffering of I/O by OS.
l  Trying: os.fsync, os.path.getsize
l  Temporary solution: Add a sleep part in the code. (1 second

seems ok for MOPAC jobs, Gaussian jobs are more tricky)

21

Conclusions

l  Parallel was the future, now we all need it.
l  Redesigning some portions of RMG-Py is necessary.

•  Reactor conditions, Pdep calculations, graph search
•  Database structure (Tree, might not be the best option)
•  Minimize I/O.
•  Avoid writing to home disk. Move them when job finishes.

•  We can avoid sharing library with workers.
l  Parallel programming is a headache even for the most advanced

programmers.
l  You may think that you solve some problems by sleeping, but it

is only a dream, it won’t last long.

22

Thank you all

RMG-Dev

23

References

l  http://web0.tc.cornell.edu/Services/Education/Topics/Parallel/
l  https://computing.llnl.gov/tutorials/parallel_comp/
l  http://www.ibm.com/developerworks/library/wa-cloudgrid/
l  http://parajava.sourceforge.net/
l  http://groups.csail.mit.edu/cag/ps3/
l  http://www.intel-software-academic-program.com/courses/

24

Monte-Carlo computation of pi

l  Generate a random point inside unit square
•  Two random numbers 0<x,y<1

l  The probability of having this point
inside the quarter of unit disc is pi/4

http://code.google.com/p/scoop/

