RMG Study Group

Solvent effects in RMG (Java $+ \pi$)

Belinda Slakman and Amrit Jalan December 06, 2013

Solvent effects are important in many chemical systems of practical interest

Engines: gumming and clogging in diesel injectors

Catalysis, Fuel cells

Detailed kinetic modeling of solution phase systems is still fairly fictional

Thermal stability under storage conditions

Objective: to boldly swim where no one has swum before

RMG System Overview

Requires modifications to handle different solvents

Automatic estimation of solvent effects on:

- 1) Species thermochemistry
- 2) Reaction rate parameters

Our application demands both accuracy and high-throughput

System	Reactions	Species
Butanol oxidation	3381	263
Jet Fuel oxidation	7715	317
Methyl formate oxidation	1550	285
Hexane pyrolysis	1178	60

Actual number of reactions and species considered can be $\sim 10^6$

Structure-activity relations are already used in gas-phase RMG for high-throughput parameter estimation

e.g. Group additivity & Evans Polanyi relations

We are looking for similar methods for solution phase thermochemistry and kinetics

Outline

We want quick estimates of $G_i(T)$ and k in different solvents

Solution phase thermochemistry

Solution Phase kinetics

Metrics: Accuracy and high-throughput

Solvation thermodynamics involves cavity formation and solute-solvent interactions

Digging a hole in the solvent

- Dipolarity/ polarizability
- Hydrogen bonding

Free energy change of entire process = ΔG_{solv}^0

Existing theoretical models for ΔG_{solv}^0 are fairly accurate but computationally expensive

- Implicit solvation models
 - QM description of solute, solvent as bulk continuum
 - Model both kinetics and thermochemistry
- Explicit solvent molecular mechanics
 - Use force fields to model solute solvent interactions
- Parameterized using experimental data
- 1. On-the-fly quantum calculations: computationally expensive
- 2. Gas phase approach:
 Perform QM calculations and fit groups
 for each solvent

Empirical models of solvation use solute/solvent descriptors to model $\Delta G_{\rm solv}^0$

The Abraham model

- Linear Solvation Energy Relationships (LSER)
- Use molecular descriptors to quantify different interactions

A,B,E,S,L: available for over 5000 solutes c,a,b,e,s,l: available for >50 solvents

LSER approach is attractive if we can estimate solute descriptors for an arbitrary molecule

Platts et al. developed a group additivity approach

Descriptor	Value		
A	0.003		
В	0.807		
Е	0.752		
S	1.391		
L	7.072		

Solvent	ΔG ⁰ _{solv} (kcal/mol)
Hexane	-9.68
Water	-7.58
CH ₃ CN	-11.65
DMSO	-11.57

2D molecular structure

 \longrightarrow

Solute descriptors

 ΔG_{solv}^{0}

Negligible cost per computation => high-throughput

LSER reproduce experimental ΔG_{solv}^0 for a variety of solute-solvent pairs

- Minnesota Solvation Database:
 935 experimental data points
 (130 solutes, 35 solvents)
- RMS error (RMSE)= 0.47 kcal/mol
- Outliers: solute-solvent pairs with strong H-bonding

Temperature dependence: decomposition of ΔG_{solv}^0 into ΔH_{solv}^0 & ΔS_{solv}^0

$$\Delta G_{\text{solv}}(T) = \Delta H_{\text{solv}}^0 - T \Delta S_{\text{solv}}^0$$

Method 1: Analytical expressions from hard-sphere models

$$\Delta S_{\text{solv}}^0 \approx \Delta S_{\text{cav}}^0 = -\left(\frac{\partial \Delta G_{\text{cav}}^0}{\partial T}\right) = K_0' + K_1' r_{\text{cav}} + K_2' r_{\text{cav}}^2$$

• Input parameters: r_{solute} , r_{solvent} , ρ , T

Method 2: Empirical correlations for ΔH_{solv}^0 developed by Mintz et al. *

$$\Delta H_{solv}^{0} = c' + e'E + s'S + a'A + b'B + l'L$$

• No new input parameters, may not be available for all solvent of interest

Testing the accuracy of hard sphere models: alkane solvents

Use of correction factors drastically improves agreement with experimental data:

- Heptane: $\alpha = 1.38 A^0$, $\beta = 0.95$
- High sensitivity to molecular radii

Testing the accuracy of hard sphere models: alkane solvents

Testing the accuracy of hard sphere models: protic solvents

Correction factors improve agreement: Octanol: $\alpha = -1.72 A^0$, $\beta = 0.91$

• Species with strong H-bonding are main outliers

Testing the accuracy of hard sphere models: protic solvents

Empirical correlations work for both alkane and protic solvents

$$\Delta H_{Solv}^0 = c' + e'E + s'S + a'A + b'B + l'L$$

Mintz estimates for alkane solvents with RMG descriptors

Mintz estimates for protic solvents with RMG descriptors

Simple approximations are used to estimate solvation of free radical intermediates

- Corrections using Platts' group values are being used
 - correct for H-bond donating ability (A) of saturated species
 - all other descriptors assumed to be the same

Species	E	S	A	В	L
ROOH	1.044	1.147	0.348	0.644	6.232
ROO.	1.044	1.147	0.003	0.644	6.232

These radical corrections are implemented in a manner similar to gas phase thermo.

Species	$\Delta G_{ m hyd}^{0}$ (k_H)	$\Delta G_{ m hyd}^0$ (RMG)
НО.	-3.9	-4.7
HOO.	-6.8	-7.5

^{*}values in kcal/mol

Outline

We want quick estimates of $G_i(T)$ and k in different solvents

• Solution phase thermochemistry _k

Abraham/Platts/Mintz + some QM

Solution Phase kinetics

Solvent dependent structure activity relationships

Metrics: Accuracy and high-throughput

Outline

We want quick estimates of $G_i(T)$ and k in different solvents

Solution phase thermochemistry

Solution Phase kinetics

Solvent dependent structure activity relationships

Metrics: Accuracy and high-throughput

Prevailing view: Solvents do not influence radical reaction rates

Cite this: Chem. Soc. Rev., 2011, 40, 2157-2163

www.rsc.org/csr

TUTORIAL REVIEW

The frequently overlooked importance of solvent in free radical syntheses

Grzegorz Litwinienko,^a A. L. J. Beckwith^b and K. U. Ingold*^c

Received 8th January 2011 DOI: 10.1039/c1cs15007c

COMMUNICATION

www.rsc.org/chemcomm | ChemComm

Kinetic solvent effects on peroxyl radical reactions†

Mukund Jha and Derek A. Pratt*

Received (in Cambridge, UK) 9th January 2008, Accepted 25th January 2008 First published as an Advance Article on the web 8th February 2008 DOI: 10.1039/b800369f

Solvent can affect elementary reaction rates primarily through two routes

1. Differential solvation of transition state vs. reactants

Transition state $\mu = 2.64$ Debye

β-scission rates ⇔ electrostatic descriptors

Solvents can affect elementary reaction rates primarily through two routes

2. Formation of reactant-solvent complexes

$$\log k_S = \log k_0 - 8.3AB$$

H-Abstraction⇔ H-bonding descriptors

Complexation with solvent can reduce availability of free reactants

It is also possible that both effects operate simultaneously

Differential solvation and reactant-solvent complexes

Snelgrove et al., 2001

El-Sheshtawy et al., 2011

To what extent can computational modeling help us quantify these effects?

Outline

We want quick estimates of $G_i(T)$ and k in different solvents

Solution phase thermochemistry

Solution Phase kinetics

Solvent dependent structure activity relationships

Metrics: Accuracy and high-throughput