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Solvent effects are important 1n many
chemical systems of practical interest
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Catalysis, Fuel cells

Detailed kinetic modeling of solution
phase systems 1s still fairly fictional




Objective: to boldly swim
where no one has swum before

RMG System Overview
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Requires modifications to
handle different solvents
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Our application demands both
accuracy and high-throughput

System Reactions  Species
Butanol oxidation 3381 263
Jet Fuel oxidation 7715 317
Methyl formate oxidation 1550 285
Hexane pyrolysis 1178 60

Structure-activity relations are already used in
gas-phase RMG for high-throughput
parameter estimation

e.g. Group additivity & Evans Polanyi
relations

Actual number of reactions and
species considered can be ~10°

We are looking for similar
methods for solution phase
thermochemistry and kinetics



Outline

We want quick estimates of G;(T) and & in different solvents

* Solution phase thermochemistry q:.a_

* Solution Phase kinetics
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Metrics: Accuracy and high-throughput



Solvation thermodynamics involves cavity
formation and solute-solvent interactions

% Digging a hole

in the solvent

* Dipolarity/
polarizability

* Hydrogen bonding

0

Free energy change of entire process = AGg



Existing theoretical models for AG ., are

fairly accurate but computationally expensive

* Implicit solvation models
* QM description of solute, solvent as bulk continuum
* Model both kinetics and thermochemistry

* Explicit solvent molecular mechanics
» Use force fields to model solute solvent interactions

* Parameterized using experimental data

1. On-the-fly quantum calculations:
computationally expensive

2. Gas phase approach:
Perform QM calculations and fit groups
for each solvent




Empirical models of solvation use

solute/solvent descriptors to model AG?

solv

The Abraham model

* Linear Solvation Energy Relationships (LSER)
* Use molecular descriptors to quantify different interactions

A GO | B Solute descriptor
S0 _— e+ eE +5sS +ad+ bB + IL Bl Solvent dependent

2.303RT / X / \ coefficients

Cavity
Formation

Electrostatic Hydrogen
(dipolarity, polarizability) bonding

A,B,E,S,L : available for over 5000 solutes
c,a,b,e,s, [ :available for >50 solvents



LSER approach 1s attractive if we can estimate
solute descriptors for an arbitrary molecule

Platts et al. developed a group additivity approach
?a?ﬁiine Solvent AGq

Non- fused solv
aromatic Methyl A 0.003 (kcal/mol)
B 0.807 Hexane -9.68
Q_
= O E 0.752 Water -7.58
S 1.391 CH;CN -11.65
Non- i - -
oster i L 7.072 DMSO 11.57
2D molecular structure —) Solute descriptors — AGS ..

Negligible cost per computation => high-throughput



LSER reproduce experimental AG

0

solv for

a variety of solute-solvent pairs
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* Minnesota Solvation Database:
935 experimental data points
(130 solutes, 35 solvents)

 RMS error (RMSE)
= (.47 kcal/mol

* Outliers: solute-solvent pairs
with strong H-bonding
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T emperature dependence° decomposition
ofAGsow into AHy ., & ASS

(T) = AHY - TASOSO]V

solv solv

Method 1: Analytical expressions from hard-sphere models

OAGD
~ ASO = — ( a;av) = K(; + K1’rcav + Kzrcav

Input parameters: Tso1uter solvents 25 1

Method 2: Empirical correlations for AHY ., developed by Mintz et al. *
AH) . =c +eE+sS+a’A+b’B+/L

* No new input parameters, may not be available for all solvent of interest
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Testing the accuracy of hard sphere models:

alkane solvents
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Use of correction factors drastically improves agreement with experimental data:

e Heptane: @ = 1.38 4%, B = 0.95
* High sensitivity to molecular radui
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Testing the accuracy of hard sphere models:
alkane solvents
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Testing the accuracy of hard sphere models:
protic solvents

Correction factors improve agreement: Octanol: « = —1.72 A°, B = 0.91
* Species with strong H-bonding are main outliers
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Testing the accuracy of hard sphere models:
protic solvents
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Empirical correlations work for both alkane

and protic solvents

AHY . =cC +e’E+s'S+a’A+b'B+/'L
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Mintz estimates for alkane solvents
with RMG descriptors
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Mintz estimates for protic solvents
with RMG descriptors
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Simple approximations are used to estimate
solvation of free radical intermediates

* Corrections using Platts’ group values are being used
* correct for H-bond donating ability (A) of saturated species
* all other descriptors assumed to be the same

 Species | E_| S | A | B | L_
ROOH 1.044 1.147 0.348 0.644 6.232
O. 1.044 1.147 0.003 0.644 6.232

0 0
(ky) | (RMG)

HO. -3.9 -4.7
HOO. -6.8 -7.5

These radical corrections are
implemented 1in a manner similar to gas
phase thermo. *values in kcal/mol



Outline

We want quick estimates of G;(T) and & in different solvents

] ] Abraham/Platts/Mintz
* Solution phase thermochemistry y  +some QM
\ Solvent dependent

structure activity
» Solution Phase kinetics relationships

Metrics: Accuracy and high-throughput



Outline

We want quick estimates of G;(T) and & in different solvents

* Solution phase thermochemistry

0 Solvent dependent
- structure activity
* Solution Phase kinetics / relationships

Metrics: Accuracy and high-throughput



Prevailing view:
Solvents do not influence radical reaction rates

Cite this: Chem. Soc. Rev,, 2011,40,2157-2163
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Solvent can affect elementary reaction
rates primarily through two routes

1. Differential solvation of transition state vs. reactants
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B-scission rates < electrostatic descriptors



Solvents can affect elementary reaction
rates primarily through two routes

2. Formation of reactant-solvent complexes

S
Kxnis
XH + § = — XH—S
° O .
Y l kXH/Y. Y{
YH + X* + S no reaction
H-Abstraction<> H-bonding descriptors

Complexation with solvent can reduce
logks =logk, — 8.3AB availability of free reactants



It 1s also possible that both
effects operate simultaneously

Differential solvation and reactant-solvent complexes

S
K XH/S transition state

XH + § =< =  XH—S —_—

Il "—
Ph+o- gas phase ',/".' Ph+(‘3°
Y| k SH e Y* benzene ¢ '.', H

@ &
YH + X* + S no reaction acetonitrile /
Snelgrove et al., 2001 El-Sheshtawy et al., 2011

To what extent can computational
modeling help us quantify these effects?



Outline

We want quick estimates of G;(T) and & in different solvents

* Solution phase thermochemistry

0 Solvent dependent
- structure activity
* Solution Phase kinetics / relationships

Metrics: Accuracy and high-throughput



