
Memory Analysis and CPU-time Profiling 
in RMG-Java

Kehang Han
Jan. 22, 2014

1/23/17 1



1/23/17 2

Outline

Memory Management in Java

Demo of Memory Analysis

CPU-time Profiling

Possible Approaches



1/23/17 3

Memory Management in Java

• Programming	languages	like	C/C++

o Manually	allocate/de-allocate	memory

• Java

o Automatically	de-allocate

o Garbage	collector



1/23/17 4

Basic concepts for Garbage Collection

• Heap	dump

• Shallow	heap Memory consumed by one object 
itself 

• G.C.	root Any variables your program can 
access directly

§ Local variables

§ Class static variables



1/23/17 5

Basic concepts for Garbage Collection

• Live	objects Can be reached from G.C. Root

• Dominator

• Retained	set	&	heap



1/23/17 6

Mark and Sweep Garbage Collection



1/23/17 7

Mark and Sweep Garbage Collection



1/23/17 8

Mark and Sweep Garbage Collection



1/23/17 9

Outline

Memory Management in Java

Demo of Memory Analysis

CPU-time Profiling

Possible Approaches



1/23/17 10

RAM limitation



1/23/17 11

RAM limitation



1/23/17 12

Demo of Memory Analysis

• How	to	get	a	heap	dump

o Console: jmap -dump:format=b,file=<filename.hprof> <pid>

o .sh file: -XX:+HeapDumpOnOutOfMemoryError

• How	to	use	Eclipse	Memory	Analyzer

o Histogram

o Outgoing & incoming

o Dominator tree & immediate dominator

o Retained set



1/23/17 13

Object Graph in RMG-Java

D is a core species?

D is a new edge species?



1/23/17 14

Demo of Memory Analysis

0 2 4 6 8 10 12 14 16
0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

M
em

or
y 

pe
rc

en
ta

ge
 b

y 
C

he
m

G
ra

ph

Running Time/min

ChemGraph is the class of objects that occupy most RAM!



1/23/17 15

What ChemGraph Dominates?

89% 

5% 
4% 2% 

Graph String ThermoData TransportData



1/23/17 16

Outline

Memory Management in Java

Demo of Memory Analysis

CPU-time Profiling

Possible Approaches



1/23/17 17

CPU-time Profiling



1/23/17 18

CPU-time Profiling

23% 

33% 

33% 

11% 

Enlarging	model PDepNetwork Solving	ODE Writing	file



1/23/17 19

Outline

Memory Management in Java

Demo of Memory Analysis

CPU-time Profiling

Possible Approaches



Proposed approach: 

Replace edge’s ChemGraphs with much cheaper identifiers

• One identifier < 100bytes, while one ChemGraph ~ 104bytes,

• Can retrieve ChemGraphs back when needed,

• Can compare with other edge species using identifiers.

1/23/17 20

At later stage of reaction generation:

• ChemGraph takes up most memory,

• > 95% ChemGraphs are for edge species.

Most ChemGraphs occupy memory but contribute little

Approach1: Memory Usage Reduction



1/23/17 21

One iteration from view of MEMORY



1/23/17 22

Upon Reaction Generation



In original design, Dynamic simulation 
is the next step;

Now new steps added BEFORE that:

Memory Usage Reduction Method

1/23/17 23

New steps added



1/23/17 24

ChemGraph è SMILES



1/23/17 25

If edge species D is a new one

Garbage	collected!



1/23/17 26

Now	comes

Dynamic	simulation	&	Selection

Edge	species	D	will	be	finally	
entering	core



1/23/17 27

Upon Species D being selected



1/23/17 28

Approach2: Pruning Edge Species

Pruning will be done based 
on fluxes.

• Upper limit of edge species

• Below a certain flux

Pruned!



1/23/17 29

Approach3: Job Partition

Processor

100 coreSpecies 400 coreRxns

10K edgeSpecies

50K edgeRxns

spread to 10 processors

Processor1

100 coreSpecies 400 coreRxns

~1K edgeSpecies

related edgeRxns

……

Processor10

100 coreSpecies 400 coreRxns

~1K edgeSpecies

related edgeRxns

Heavily limited by the 10K edge species



1/23/17 30

How to Partition Job

• Each	processor	keeps	a	copy	of	core	model	in	its	own	memory;	

• Edge	species	almost	evenly	split	into	N	pieces	for	N	processors;
o Using	M.W.	makes	partition	easy	and	fast
o Processor1	collects	those	species	with	M.W.	≤ 30
o Processor2	collects	those	with	30 <M.W. ≤ 60
o ……

• Edge	reactions	go	where	corresponding edge	species	go;
o e.g.	CH3	+	C2H6	à CH4	(M.W.=16)	+	C2H5	(M.W.=29)	
should	go	to	Processor1
o e.g.	CH3	+	C2H5OH	à CH4	(M.W.=16)	+	C2H5O	(M.W.=45)
Processor1	stores	CH3	+	C2H5OH	à CH4	(M.W.=16)	+	“other	edgeSpecies”
Processor2	stores	CH3	+	C2H5OH	à C2H5O	(M.W.=45)	+	“other	edgeSpecies”



1/23/17 31

How Job Runs Differently

Step1:	ODE	solving.	(Not	affected)
• Edge	species	don’t	serve	as	reactants
• Core	species	and	edge	species	are	decoupled in	ODE	system
• ODE	solver	in	each	processor	stops	at	different	conversion

Step2:	select	new	core	species.	(Need	communication)
• Processor	with	smallest	conversion

Step3:	update	core	and	edge	model.	
• Move	the	new	core	species	from	edge	to	core
• Move	related	edge	reactions	to	core	except	those	having	“other	edgeSpecies”	
• Make	reactions	between	new	core	species	and	old	core	species

o Not	all	products	are	core	species	à checking	where	to	go
o All	products	are	core	species	à checking	reverse	reactions



1/23/17 32

How Job Runs Differently


