
Software Carpentry
for RMG developers

RMG Study Group
March 21, 2014

SoftwareCarpentry.org -
an introduction

Teach software skills to researchers

Provide guidance on best practices and other
problems

Our contact: Trevor King

Familiar with git, Python, Django

We were interested in promoting code review

With excerpts from:

A SmartBear White PaperUsing peer code review best practices optimizes your code reviews, improves your code and makes

the most of your developers’ time. The recommended best practices contained within for efficient,

lightweight peer code review have been proven to be effective via extensive field experience.

11 Best Practices for Peer Code Review

Contents
Introduction ..2

1. Review fewer than 200-400 lines of code at a time ...2

2. Aim for your inspection rate of less than 300-500 LOC/hour ...2

3. Take enough time for a proper, slow review, but not more than 60-90 minutes. ...3

4. Authors should annotate source code before the review begins. ...3

5. Establish quantifiable goals for code review and capture metrics so you can improve your processes.4

6. Checklists substantially improve results for both authors and reviewers. ..5

7. Verify that defects are actually fixed!...5

8. Managers must foster a good code review culture in which finding defects is viewed positively..6

9. Beware the “Big Brother” effect. ...7

10. The Ego Effect: Do at least some code review, even if you don’t have time to review it all ...8

11. Lightweight-style code reviews are efficient, practical, and effective at finding bugs. ..8

Summary ..9

Ensuring Software Success SM

www.smartbear.com/codecollaborator

Discussions happen offline
but aren’t catalogued

Offline discussions are efficient but people
forget what was discussed (or were left out)

Discussions online provide a history

2 years later we can revisit a problem

others can join in with suggestions

we can attach code

Code review: shorter is better

Introduction

It’s common sense that peer code review – in which software developers review each other’s code before releas-
ing software to QA – identifies bugs, encourages collaboration, and keeps code more maintainable.

But it’s also clear that some code review techniques are inefficient and ineffective. The meetings often man-
dated by the review process take time and kill excitement. Strict process can stifle productivity, but lax process
means no one knows whether reviews are effective or even happening. And the social ramifications of personal
critique can ruin morale.

This whitepaper describes 11 best practices for efficient, lightweight peer code review that have been proven to
be effective by scientific study and by SmartBear’s extensive field experience. Use these techniques to ensure
your code reviews improve your code – without wasting your developers’ time.

1. Review fewer than 200-400 lines of code at a time.

The Cisco code review study (see sidebar on page 5) shows that for optimal effectiveness, developers should re-
view fewer than 200-400 lines of code (LOC) at a time. Beyond that, the ability to find defects diminishes. At this
rate, with the review spread over no more than 60-90 minutes, you should get a 70-90% yield; in other words, if
10 defects existed, you’d find 7-9 of them.

The graph to the right, which plots defect density against the number of lines of code under review, supports
this rule. Defect density is the number of defects per 1000
lines of code. As the number of lines of code under review
grows beyond 300, defect density drops off considerably.

In this case, defect density is a measure of “review effective-
ness.” If two reviewers review the same code and one finds
more bugs, we would consider her more effective. Figure 1
shows how, as we put more code in front of a reviewer, her
effectiveness at finding defects drops. This result makes
sense – the reviewer probably doesn’t have a lot of time to
spend on the review, so inevitably she won’t do as good a job
on each file.

2. Aim for an inspection rate of less than 300-500 LOC/hour.

Take your time with code review. Faster is not better. Our research shows that you’ll achieve optimal results at
an inspection rate of less than 300-500 LOC per hour. Left to their own devices, reviewers’ inspection rates will
vary widely, even with similar authors, reviewers, files, and review size.

To find the optimal inspection rate, we compared defect density with how fast the reviewer went through the
code. Again, the general result is not surprising: if you don’t spend enough time on the review, you won’t find
many defects. If the reviewer is overwhelmed by a large quantity of code, he won’t give the same attention to

2

Figure 1: Defect density dramatically decreases when
the number of lines of inspection goes above 200, and is
almost zero after 400.

You don’t detect defects if reviewing too
much at once.

Large commits are hard to follow
so don’t get reviewed properly

Make each commit do one thing

GUI to help stage individual lines

interactive rebase if you need

Long topic branches are hard to review

rebase them into mergeable chunks,
and merge frequently (via pull requests)

Writing good commit messages will help

Annotation helps prevent errors

Explaining yourself reduces your error rate!
invented the term to describe a certain behavior pattern
we measured during the study, exhibited by about 15%
of the reviews. Annotations guide the reviewer through
the changes, showing which files to look at first and
defending the reason and methods behind each code
modification. These notes are not comments in the code,
but rather comments given to other reviewers.

Our theory was that because the author has to re-think
and explain the changes during the annotation process,
the author will himself himself uncover many of the de-
fects before the review even begins, thus making the review
itself more efficient. As such, the review process should yield a lower defect density, since fewer bugs remain.

We also considered a pessimistic theory to explain the lower
bug findings. What if, when the author makes a comment, the
reviewer becomes biased or complacent, and just doesn’t find as
many bugs? We took a random sample of 300 reviews to investi-
gate, and the evidence definitively showed that the reviewers were indeed carefully reviewing the code – there
were just fewer bugs.

5. Establish quantifiable goals for code review and capture metrics so you can improve your processes.

As with any project, you should decide in advance on the goals of the code review process and how you will
measure its effectiveness. Once you’ve defined specific goals, you will be able to judge whether peer review is
really achieving the results you require.

It’s best to start with external metrics, such as “reduce support calls by 20%,” or “halve the percentage of
defects injected by development.” This information gives you a clear picture of how your code is doing from the
outside perspective, and it should have a quantifiable measure – not just a vague “fix more bugs.”

However, it can take a while before external metrics show results. Support calls, for example, won’t be affected
until new versions are released and in customers’ hands. So it’s also useful to watch internal process metrics to
get an idea of how many defects are found, where your problems lie, and how long your developers are spend-
ing on reviews. The most common internal metrics for code review are inspection rate, defect rate, and defect
density.

Consider that only automated or tightly-controlled processes can give you repeatable metrics – humans aren’t
good at remembering to stop and start stopwatches. For best results, use a code review tool that gathers metrics
automatically so that your critical metrics for process improvement are accurate.

To improve and refine your processes, collect your metrics and tweak your processes to see how changes affect

4

Figure 3: The striking effect of author preparation on defect
density.

Sure enough, reviews with author prepara-
tion have barely any defects compared to
reviews without author preparation.

Commit messages should describe why
you’re doing something

Not just describing what was done, but the
rationale

The ‘diff’ shows what you did.

Makes more sense when revisited in the future

Helps reviewers check you’re achieving what
you intended, and suggest other ways.

Bad:‘Attempts to fix double-ended approach’

Nothing’s too small for a pull request
(or too urgent).

Topic branches, issues, bug fixes, typos..

Promotes discussion and code review

Preserves discussion

Assign more people to review and merge

let’s help Connie out

Festering topic branches not reviewed:

Solution: pull requests and rebase

Git magic to the rescue!

[remote "greengroup"]
url = git://github.com/GreenGroup/RMG-Py.git
fetch = +refs/heads/*:refs/remotes/greengroup/*
fetch = +refs/pull/*/head:refs/remotes/greengroup/pr/*

git rerere --help

Problem: Topic branches remain
unmerged for a long time

Rebase often onto the master branch

helps when you finally have to merge

When making core changes introduce them into
the master

e.g. changes to molecule, reaction, etc.
should be brought in early

allows people to discuss and adapt

Problem: When a merge occurs we
don’t know if something broke

Solution: unit tests!

Continuous integration testing on topic
branches (Travis-CI.org?)

a study group for unittest writing?

Better use of git and github features
can help RMG developers

Open more issues (do labels help?)

Short commits with descriptive commit msgs

More pull requests

Rebase topic branches onto master often

Merge core changes from topics early

Write more unittests

11 Best Practices for Peer Code Review

1. Review fewer than 200-400
lines of code at a time

2. Aim for your inspection rate
of less than 300-500 LOC/hour

3. Take enough time for a
proper, slow review, but not
more than 60-90 minutes

4. Authors should annotate
source code before the review
begins

5. Establish quantifiable goals
for code review and capture
metrics so you can improve
your processes

6. Checklists substantially
improve results for both
authors and reviewers

7. Verify that defects are
actually fixed!

8. Managers must foster a good
code review culture in which
finding defects is viewed
positively

9. Beware the “Big Brother”
effect

10. The Ego Effect: Do at least
some code review, even if you
don’t have time to review it
all

11. Lightweight-style code
reviews are efficient,
practical, and effective at
finding bugs

