
Planning	the	official	release	of	RMG-Py
issues	to	resolve	and	issues	to	put	off

Connie	Gao
4/11/2014

RMG	Study Group

What	do	users	need?

• Easy	installation
• Comprehensive	documentation	and	examples
• Transparent	and	easy	to	manipulate	databases
• Code	stability
• Something	to	cite

How	do	we	give	users	what	they	need?

• Easy	installation
– Package	RMG	as	an	executable	for	Windows	(py2exe	or	NSIS),	

Linux	(Freeze	or	PyInstaller),	and	Mac	(py2app)
• Comprehensive	documentation	and	examples

– Write	them!
• Transparent	and	easy	to	manipulate	databases

– Upgrade	to	universal	database	and	provide	GUI	for	manipulation
• Stability

– Stable	but	extensible	input	files	and	adjacency	lists	(strive	for	
backwards	compatibility	from	version	1.0	onwards)

– Finalize	RMG’s	current	features	and	hold	off	on	developing	
features

• Something	to	cite
– RMG-Py software	paper	planned	in	conjunction	with	release

Universal	database:	requirements

• User	friendly	both	in	raw	form	and	through	a	GUI
• Capable	of	storing	lengthy	reference	information
• Extensive	error	checking

Universal	database:	making	it	user-friendly

• Python	style	raw	database	files	modified	according	to	
user	suggestions:
– Separate	dictionaries	from	list	of	reactions
– Reactions	and	rate	rules	searchable	by	string
– Allows	user	to	easily	compare	values	without	extensive	
scrolling

– Capability	of	storing	long	comments

Universal	database:	making	it	user-friendly

• Use	website	as	a	GUI	portal	for	users	to	modify	the	
database	(capabilities	are	already	online	but	need	
maintenance)
– Django allows	individual	user	accounts:	make	the	website	
a	portal	for	modifying personal	copies	of	the	database

– Better	visualization	and	displaying	rates	for	comparisons
– Input	file	creation	through	the	website	(capability	already	
there,	just	not	up	to	date)

• Advantage	of	using	the	website	is	that	we	can	
actively	maintain	a	single	working	copy— the		user	
does	not	have	extra	software	or	patches	to	install

Universal	database:	error-checking

• Nathan	has	been	working	on	
a	test	script	that	should	be	
cleared	whenever	the	
database	is	modified.
– Child	checking	in	trees
– Identification	of	duplicates
– Cross	checks	of	names	and	

adjlists
• We	now	have	internal	mass	

balance	and	duplicate	
checks	for	thermo	and	
reaction	libraries

Code	stability:	finalizing	the	adjacency	list

• Hydrogens	can	be	either	explicit	or	
non-explicit

• Assume	default	values	for	charges	
and	lone	pairs	when	unspecified

• Letter	flags	make	adjlists extensible	
for	new	attributes

1 C R0 L0 C0 {2,S} {3,S} {4,S} {5,S}
2 H R0 L0 C0 {1,S}
3 H R0 L0 C0 {1,S}
4 H R0 L0 C0 {1,S}
5 H R0 L0 C0 {1,S}

1 C R0

R0 L0 C0

#	of	Radical	Electrons	
#	of	Lone	Pairs

Charge

Multiple	ways	to	represent	methane	(CH4)

1 C R0 L0

Radicals	only
No	explicit	hydrogens	

Radicals	and	lone	pairs
No	explicit	hydrogens	

Radicals,	lone	pairs,	and	charges
Explicit	hydrogens	

Minimum	
Representation

• Devise	rigorous	unit	tests	and	write	clear	documentation

Code	stability:	finalizing	RMG’s	current	features	
and	holding	off	on	developmental	features
• Gas	and	liquid	phase	chemistry
• Hydrocarbon	(C,	H,	O)	and	heteroatom	(N,	S)	support
• Parameter	estimation

– Thermochemistry:	update	aromaticity perception
– Kinetics:	eliminate	cyclic	transition	state	double-counting
– Transport	

• Spin	state	conservation	(in	progress)
• Pressure	dependent	networks
• On-the-fly	quantum	mechanics

– Thermo
– Kinetics	(in	progress)

• Sensitivity	analysis	(in	progress)
• CanTherm

Final	task	list

1. Universal	raw	database	with	error	checking
2. Finalize	current	features	(make	up	to	date	with	Java)
3. Devise	examples	and	write	RMG-Py paper
4. Package	and	release

5. Make	website	a	functional	GUI	for	database
6. Development	of	additional	features

Lower	priority	tasks

