RMG Study Group

Belinda Slakman December 1, 2016

Topics

- Silicon hydrides
- Solvation kinetics
- For each, will present theory, some results & its implementation in RMG-Py

Enable silicon hydride chemistry in RMG

 Simulate silicon hydride chemical vapor deposition, silicon nanoparticle formation

 Need to update and/or add reaction families, libraries, thermodynamics

• Need reasonable experimental comparisons

Two new reaction families and reaction libraries added to RMG

- Silylene Insertion (new)
- Silylene-to-Silene Isomerization (new)
- Hydrogen Abstraction (updated)
- Radical Recombination (updated)

Reaction libraries, including ring opening reactions

Thermodynamics data added to RMG

 Common species available in NIST database

- High level calculations for some ring species¹
- Group additivity values for stable species²

- Newly developed hydrogen bond increment (HBI) values for radicals:
 - * these were using G3//B3LYP

Additions to Cantherm

- Spin orbit coupling value for Si
- Atomic energies for G3//B3LYP, CBS-QB3, and M062X/MG3S
- BAC for G3//B3LYP

Comparison to SiH₄ decomposition experiment

Model matches experiment within uncertainty

Experiment = 913 K

Model matches experiment within a 20 K temperature difference

Corresponds to 1-2 kcal/ mol difference in activation energy

Model cannot capture effect of changing initial y_{SiH4}

RMG-Py implementation

- On branch 'bslakman/RMG-Py/silicon-hydrides' and 'bslakman/ RMG-database/silicon-hydrides'
- Will get up to date with current master, and submit a pull request
- See http://pubs.acs.org/doi/abs/10.1021/acs.iecr.6b02402

Framework needed for liquid phase mechanism generation

Solvation thermo

Linear solvation energy relationships (LSERs) and a molecular structure group additivity approach

Solvation kinetics

How can we generalize solvent effects in a quick, high-throughput way?

Diffusion-limited kinetics

Stokes-Einstein theory for bimolecular reaction rates

A Jalan et al., *J. Phys. Chem. B*, 117(10), 2013

Reaction barrier is affected by solvation

Adapted from Crim, F.F., Farad. Discuss., 2012

Barrier height changes depending on differing effect of solvent on reactant and transition state

$$\Delta E_{\rm A} = E_{\rm A}^{\rm liquid} - E_{\rm A}^{\rm gas}$$

SMD energy calculation provides tradeoff between accuracy and speed

- SMD is a continuum solvation model with some corrections for the first solvent shell¹
- Full electron density used
- A single point energy calculation based on SMD is performed on gas-phase geometries and transition states to calculate ΔE_A
- 8 solvents chosen to span a range of dielectric constant and 6 solvent categories²

$$\Delta E_{\rm A} = E_{\rm A}^{\rm liquid} - E_{\rm A}^{\rm gas}$$

Results suggest ΔE_A can be predicted

- Method should modify gas phase E_A based on
 - molecular structure of reactants
 - solvent
- Molecular structure tree for each solvent category, based on trends observed

Results: Trained group values from $47 \Delta E_A$ values

Example:
$$CH_3OH + \bullet OOH \Leftrightarrow CH_3O \bullet + H_2O_2$$

General

X-H

 $H - C - O - H$

H

1.37

 $H = 0.51 = 1.88$

Y• •
$$O-O-$$
 -0.01 + 0.91 = 0.90

 $\Delta E_A = 2.78 \text{ kJ/mol}$

Will kinetic solvation corrections make a difference in existing models?

- Ben Amara et al. (2013) used RMG to build a detailed kinetic model for nC12/methyl oleate oxidation, and compared to experiments¹
 - Liquid-phase thermodynamic corrections were used
- 2924 of 3275 reactions (89%) were hydrogen abstraction
- We modified the H-abstraction rates using the group contribution method for ΔE_A and simulated it with Cantera²

Figure 3a from Ben Amara et al.; Comparison of induction times from detailed kinetic model with experiments.

Model simulation with Le Cantera

Octane and methyl heptane mechanisms

 Recently, we modified updated mechanisms from IFP group, now with many more training reactions (> 1000), and for both hydrogen abstraction and intra-H migration reactions.

RMG-Py implementation

- Currently, a post processing script
 - 'bslakman/my_scripts/modifyReactionBarriers.py'
 - Can add to script repository
 - Need to use with my updated solvation branches of RMG-Py and RMG-database
 - In process of making automated during mechanism generation
 - Benchmarking (Jason Cain)